
Innovation and
Application of
AndeStar™ V5
Architecture

Wen Wang

Director of CCBU

Andes Technology

Taking RISC-V® Mainstream 2

前言

AI is changing the world as smart phone did in the
last decade

 IoT is connecting the world; everything is close at
hand

 AIoT is the future; AIoT is the life

Taking RISC-V® Mainstream 3

面臨的設計議題

High power efficiency and flexible power
management
 For wearable and portable devices, long life time with battery

Efficient common media processing
 For voice, beam forming, slow image

Domain-specific acceleration
 For those requiring to process higher volume of data

 Power management

 RISC-V P-extension

 Andes Custom Extension

Taking RISC-V® Mainstream 4

電源管理

Power
consumption

Performance

maximum
performance

minimum performance

Standby

Dormant

Shutdown

QuickNap™

SRAM power-down

Taking RISC-V® Mainstream 5

QuickNap™

Processor PMU

Control
Reg.

Power
Control

Interrupt

Standby
handshake
(WFI)

Interrupt
Power
switch

Scratch pad

Cache

State

Clock

Reset

Always-On Power Domain

Processor state save/restore

SRAM in retention mode

Data, Tag/Dirty bits

Taking RISC-V® Mainstream 6

電源管理應用流程

Normal

Mode

Backup

Context

HW

Handshaking

WFI

Logic

Power Off

Restore

Context

HW

Handshaking

Warm reset

Scaling

Down

Standby

Standby

Dormant

- Reduce peak power consumption
- Conserve power of busy waiting loops
- Power saving mode on low battery

- Periodically check and serve

Power on sequence

Power off sequence

PowerBrake

QuickNap

Power

Down

Shutdown

Taking RISC-V® Mainstream 7

RISC-V P-擴展

 Packed SIMD/DSP extension, currently a draft proposal

 Donated by Andes based on its popular V3 DSP ISA
 Enhanced with new instructions
 Target efficient media processing based on GPR such as audio, voice and slow

image

 Details:
 Use RV32 and RV64 GPRs
 Single instruction, multiple data: 8b, 16b, 32b element sizes
 Fixed-point and integer data types
 Saturation and rounding
 Compiler and C language friendly (supported by intrinsic functions)

 Optimized Andes libdsp for common DSP operations

 Optimized Andes libnn for neural network operations

Taking RISC-V® Mainstream 8

P-擴展:卷積神經網路應用實例1

CIFAR-10: image classification

Overall speedup: 10.7x

Based on source C code, we invoke optimized
functions in libnn, use some intrinsic functions
to directly access to the DSP instructions with
the help of DSP-capable compiler.

Taking RISC-V® Mainstream 9

P-擴展:卷積神經網路應用實例2

CNN application: face detection
 Modified CNN (MTCNN), with model reduction and depthwise

convolution

Proposal network
obtain candidate windows

Refine network
reject false candidate

Output network

R-Net

O-Net

P-Net

Overall speedup: 7.64x

Taking RISC-V® Mainstream 10

應用實例常用的P-擴展指令

Most used instructions

kmada SIMD Saturating Signed Multiply Two Halfs and Two Adds
32 = 32 + 16x16 + 16x16
32 = 32 + 16x16 + 16x16 (2 sets with RV64)

maddr32 Multiply and Add to 32-Bit Word
32 = 32 + 32x32 (low part)

sunpkd8(x)(y) Signed Unpacking Bytes x & y, xy = {10, 20, 30, 31, 32}
32 = {SE(16), SE(16)}

pk(b/t)(b/t)32 Pack Two 32-bit Data from Bottom/Top Half (RV64 only)
64 = {32, 32}

sclip32 SIMD 32-bit Signed Clip Value
6 = CLIP(32), plus overflow flag if saturation is performed

Taking RISC-V® Mainstream 11

客製化指令

Common misconception about “CPU”
 “CPU isn’t suitable for complex computations or wide I/O”

RISC-V allows custom extensions for domain-
specific acceleration (DSA)
 Andes Custom Extension (ACE)

 All ACE instructions are assigned within the CUSTOM-3 space of the
RISC-V opcode

Taking RISC-V® Mainstream 12

Andes Custom Extension (ACE)

A simple description script to describe custom
operations

A tool (COPILOT) to generate most housekeeping
works for users:

Fast turnaround time!

- Opcode assignment: automatic by default

- All required tools (compiler, assembler, disassembler and debugger),

and simulator (C or SystemC)

- RTL code for instruction decoding, operand mapping and accesses,

dependence checking, result gathering, etc.

- Verification environment/patterns and error reporting

Taking RISC-V® Mainstream 13

ACE框架

Automated Env. For
Cross Checking

CPU ISS
(near-cycle
accurate)

CPU RTL

Extensible Baseline Components

Compiler
Asm/Disasm

Debugger
IDE

Extended
Tools

- C code
- Verilog
- Attributes

Extended
ISS

Extended
RTL

Test Case Generator

Extended
RTL

Extended
ISS

 C O P I L O T
Custom-OPtimized Instruction deveLOpment Tools

- scalar/vector
- background

- wide operands

Taking RISC-V® Mainstream 14

ACE特色摘要

Items Description

Instructions

scalar single-cycle, or multi-cycle

vector for loop, or do-while loop

background
option

retire immediately, and continue execution in the
background. Applicable to scalar and vector.

Operands

standard immediate, GPR, baseline memory (thru CPU)

custom
- ACR (ACE Register), ACM (ACE Memory), ACP (ACE Port)
- With arbitrary width and number
- Operands can be “implied” to save opcode

Taking RISC-V® Mainstream 15

如何設計ACE指令

ACE description: describe instruction interfaces
(operands) and behaviors

ACE RTL design: implement RTL code for instruction
operations in concise Verilog

Taking RISC-V® Mainstream 16

insn madd32 {
 op = {io gpr acc, in gpr dat, in gpr coef};
 csim = %{
 acc+= (dat & 0xffff) * (coef & 0xffff)
 + (dat>>16) * (coef>>16);
 %};
 latency = 1;
}; madd32.ace

Instruction name

Operand list

Instruction semantics in C for
Instruction Set Simulator (ISS)

Instruction latency in CPU cycles

ACE Description Script:

ACE設計範例: madd32

Automatically generate intrinsic function:
uint32 ace_madd32(uint32, uint32, uint32)

Taking RISC-V® Mainstream 17

ACE RTL Design Language: (a Verilog-based but concise form)

// ACE_BEGIN: madd32
assign acc_out = acc_in
 + dat[15:0] * coef[15:0]
 + dat[31:16] * coef[31:16];
// ACE_END

instruction-specific logic
(no declarations needed for operands
and module I/O)

instruction decoding

Instruction
Logic

operand access

result gathering exception

control

cycle control

interrupt

control

madd32.v

ACE設計範例: madd32

Baseline processor pipeline control GPR

Taking RISC-V® Mainstream 18

ACE自定寄存器設計範例

ACE Custom Register (ACR)

reg ACC {
 number= 4;
 width= 64;
};

Register name

Total 4 entries
64-bit data width

Example:

acr_ACC

dependence check / forwarding control

instruction decoding

Instruction
Logic

datapath control

ACR register file

Taking RISC-V® Mainstream 19

ACE自定記憶體設計範例

Andes Custom Memory (ACM)

ram XMEM {
 interface= SRAM;
 width= 32;
 address_bits= 12;
};

Memory name

SRAM interface
32-bit data width
12-bit address space

Example:

Instruction
Logic

operand access

memory read/write control

Memory Interface

Taking RISC-V® Mainstream 20

csim & RTL:
same as scalar version !!!

vec insn vmadd32 {
 operand= {io gpr acc,
 in XMEM dat, in YMEM coef,
 imm5 cnt};
 loop_type= repeat(cnt);
 stride<dat>= 1;
 csim= %{
 ...
 %};
 latency= 1;
};

ram XMEN { //same for YMEM
 interface= SRAM;
 width= 32;
 address_bits= 12;
};

Vector Instruction

for loop, repeat "cnt" times
Memory address automatically increases 1 for next
iteration

per-iteration operation and latency

// ACE_BEGIN: vmadd32
...
// ACE_END

per-iteration logic

vmadd32: Vectorizing madd32

Taking RISC-V® Mainstream 21

Everything else:
same as foreground version !!!

vec bg_insn bvmadd32 {
 operand= {io gpr acc,
 in XMEM dat, in YMEM coef,
 imm5 cnt};
 loop_type= repeat(cnt);
 stride<dat>= 1;
 csim= %{
 ...
 %};
 latency= 1;
};

Background Vector Instruction

// ACE_BEGIN: bvmadd32
...
// ACE_END

bvmadd32: Backtorizing madd32

ram XMEN { //same for YMEM
 interface= SRAM;
 width= 32;
 address_bits= 12;
};

Background instruction is executed in
parallel with all other instructions

Taking RISC-V® Mainstream 22

insn madd32rb {
 op= {io gpr acc,
 in XMEM @xadr:u dat, in YMEM @yadr:u coef};
 csim= %{
 acc+=(data & 0xffff)* (coef & 0xfff)
 +(data >> 16) * (coef >> 16);
 %};
};

進階範例: 環形緩衝區使用

ram XMEM { //same for YMEM
 interface= SRAM;
 width= 32;
 address_bits= 12;
};
reg xadr { //same for yadr
 number= 4;
 width= 12;
};

address from
custom register

post-update (ACE generated logic will get it done!)

XMEM

xadr
xadr+1 for next use
 (auto-increment and auto-update)

YMEM

yadr

yadr+1

the address is wrapped-around to 0 on overflow

Ring Buffer

Taking RISC-V® Mainstream 23

進階範例: 64個8-bit數據向量的內積
insn innerp {
 op= {out gpr IP, in CfReg C, in VMEM V};
 csim= %{
 IP= 0;
 for(uint i= 0; i<64; ++i)
 IP+= ((C >>(i*8)) & 0xff) *
 ((V >>(i*8)) & 0xff);
 %};
 latency= 3; //enable multi-cycle ctrl
};
reg CfReg { //Coef Registers
 num= 4;
 width= 512;
};
ram VMEM { //data memory
 interface= sram;
 address_bits= 3; //8 elements
 width= 512;
};

//ACE_BEGIN: innerp
assign IP= C[7:0] * V[7:0]
 + C[15:8] * V[15:8]
 . . .
 + C[511:504] * V[511:504];
//ACE_END

acr_CfReg
Instruction

Logic

SRAM

acm_VMEM

512b

512b

32b
GPR

memory interface

Taking RISC-V® Mainstream 24

ACE的優勢

Users focus instruction semantics, not CPU pipeline

Housekeeping tasks are offloaded to COPILOT
 opcode selection and instruction decoding

 operand mapping/accesses/updates

 dependence checking

Comprehensive support
 Powerful instruction semantics: vector, background, wide operands

 Auto-generation of verification environment, development tools and
RTL code

ACE unlocks RISC-V’s potential for DSA

Taking RISC-V® Mainstream 25

Andes 提供客製化服務

Andes Custom Extension
 COPILOT tool license

Andes Custom Computing BU (CCBU)
 Analysis of customization algorithm

 Evaluation of customization instruction/IP

 Deliverable of customized IP

 Maintenance for customized IP

New business model for customizing RISC-V CPU for
you

Taking RISC-V® Mainstream 26

結語

More and more AIoT applications are emerging with
next generation 5G networking
 Smart home, office

 Intelligent retail, manufacturing, medical treatment

Power consumption and computation capabilities
are among the most critical issues

Andes provides innovated solutions helped
customers to innovate their SoC

Thank you

