
Innovation and
Application of
AndeStar™ V5
Architecture

Wen Wang

Director of CCBU

Andes Technology

Taking RISC-V® Mainstream 2

前言

AI is changing the world as smart phone did in the
last decade

 IoT is connecting the world; everything is close at
hand

 AIoT is the future; AIoT is the life

Taking RISC-V® Mainstream 3

面臨的設計議題

High power efficiency and flexible power
management
 For wearable and portable devices, long life time with battery

Efficient common media processing
 For voice, beam forming, slow image

Domain-specific acceleration
 For those requiring to process higher volume of data

 Power management

 RISC-V P-extension

 Andes Custom Extension

Taking RISC-V® Mainstream 4

電源管理

Power
consumption

Performance

maximum
performance

minimum performance

Standby

Dormant

Shutdown

QuickNap™

SRAM power-down

Taking RISC-V® Mainstream 5

QuickNap™

Processor PMU

Control
Reg.

Power
Control

Interrupt

Standby
handshake
(WFI)

Interrupt
Power
switch

Scratch pad

Cache

State

Clock

Reset

Always-On Power Domain

Processor state save/restore

SRAM in retention mode

Data, Tag/Dirty bits

Taking RISC-V® Mainstream 6

電源管理應用流程

Normal

Mode

Backup

Context

HW

Handshaking

WFI

Logic

Power Off

Restore

Context

HW

Handshaking

Warm reset

Scaling

Down

Standby

Standby

Dormant

- Reduce peak power consumption
- Conserve power of busy waiting loops
- Power saving mode on low battery

- Periodically check and serve

Power on sequence

Power off sequence

PowerBrake

QuickNap

Power

Down

Shutdown

Taking RISC-V® Mainstream 7

RISC-V P-擴展

 Packed SIMD/DSP extension, currently a draft proposal

 Donated by Andes based on its popular V3 DSP ISA
 Enhanced with new instructions
 Target efficient media processing based on GPR such as audio, voice and slow

image

 Details:
 Use RV32 and RV64 GPRs
 Single instruction, multiple data: 8b, 16b, 32b element sizes
 Fixed-point and integer data types
 Saturation and rounding
 Compiler and C language friendly (supported by intrinsic functions)

 Optimized Andes libdsp for common DSP operations

 Optimized Andes libnn for neural network operations

Taking RISC-V® Mainstream 8

P-擴展:卷積神經網路應用實例1

CIFAR-10: image classification

Overall speedup: 10.7x

Based on source C code, we invoke optimized
functions in libnn, use some intrinsic functions
to directly access to the DSP instructions with
the help of DSP-capable compiler.

Taking RISC-V® Mainstream 9

P-擴展:卷積神經網路應用實例2

CNN application: face detection
 Modified CNN (MTCNN), with model reduction and depthwise

convolution

Proposal network
obtain candidate windows

Refine network
reject false candidate

Output network

R-Net

O-Net

P-Net

Overall speedup: 7.64x

Taking RISC-V® Mainstream 10

應用實例常用的P-擴展指令

Most used instructions

kmada SIMD Saturating Signed Multiply Two Halfs and Two Adds
32 = 32 + 16x16 + 16x16
32 = 32 + 16x16 + 16x16 (2 sets with RV64)

maddr32 Multiply and Add to 32-Bit Word
32 = 32 + 32x32 (low part)

sunpkd8(x)(y) Signed Unpacking Bytes x & y, xy = {10, 20, 30, 31, 32}
32 = {SE(16), SE(16)}

pk(b/t)(b/t)32 Pack Two 32-bit Data from Bottom/Top Half (RV64 only)
64 = {32, 32}

sclip32 SIMD 32-bit Signed Clip Value
6 = CLIP(32), plus overflow flag if saturation is performed

Taking RISC-V® Mainstream 11

客製化指令

Common misconception about “CPU”
 “CPU isn’t suitable for complex computations or wide I/O”

RISC-V allows custom extensions for domain-
specific acceleration (DSA)
 Andes Custom Extension (ACE)

 All ACE instructions are assigned within the CUSTOM-3 space of the
RISC-V opcode

Taking RISC-V® Mainstream 12

Andes Custom Extension (ACE)

A simple description script to describe custom
operations

A tool (COPILOT) to generate most housekeeping
works for users:

Fast turnaround time!

- Opcode assignment: automatic by default

- All required tools (compiler, assembler, disassembler and debugger),

and simulator (C or SystemC)

- RTL code for instruction decoding, operand mapping and accesses,

dependence checking, result gathering, etc.

- Verification environment/patterns and error reporting

Taking RISC-V® Mainstream 13

ACE框架

Automated Env. For
Cross Checking

CPU ISS
(near-cycle
accurate)

CPU RTL

Extensible Baseline Components

Compiler
Asm/Disasm

Debugger
IDE

Extended
Tools

- C code
- Verilog
- Attributes

Extended
ISS

Extended
RTL

Test Case Generator

Extended
RTL

Extended
ISS

 C O P I L O T
Custom-OPtimized Instruction deveLOpment Tools

- scalar/vector
- background

- wide operands

Taking RISC-V® Mainstream 14

ACE特色摘要

Items Description

Instructions

scalar single-cycle, or multi-cycle

vector for loop, or do-while loop

background
option

retire immediately, and continue execution in the
background. Applicable to scalar and vector.

Operands

standard immediate, GPR, baseline memory (thru CPU)

custom
- ACR (ACE Register), ACM (ACE Memory), ACP (ACE Port)
- With arbitrary width and number
- Operands can be “implied” to save opcode

Taking RISC-V® Mainstream 15

如何設計ACE指令

ACE description: describe instruction interfaces
(operands) and behaviors

ACE RTL design: implement RTL code for instruction
operations in concise Verilog

Taking RISC-V® Mainstream 16

insn madd32 {
 op = {io gpr acc, in gpr dat, in gpr coef};
 csim = %{
 acc+= (dat & 0xffff) * (coef & 0xffff)
 + (dat>>16) * (coef>>16);
 %};
 latency = 1;
}; madd32.ace

Instruction name

Operand list

Instruction semantics in C for
Instruction Set Simulator (ISS)

Instruction latency in CPU cycles

ACE Description Script:

ACE設計範例: madd32

Automatically generate intrinsic function:
uint32 ace_madd32(uint32, uint32, uint32)

Taking RISC-V® Mainstream 17

ACE RTL Design Language: (a Verilog-based but concise form)

// ACE_BEGIN: madd32
assign acc_out = acc_in
 + dat[15:0] * coef[15:0]
 + dat[31:16] * coef[31:16];
// ACE_END

instruction-specific logic
(no declarations needed for operands
and module I/O)

instruction decoding

Instruction
Logic

operand access

result gathering exception

control

cycle control

interrupt

control

madd32.v

ACE設計範例: madd32

Baseline processor pipeline control GPR

Taking RISC-V® Mainstream 18

ACE自定寄存器設計範例

ACE Custom Register (ACR)

reg ACC {
 number= 4;
 width= 64;
};

Register name

Total 4 entries
64-bit data width

Example:

acr_ACC

dependence check / forwarding control

instruction decoding

Instruction
Logic

datapath control

ACR register file

Taking RISC-V® Mainstream 19

ACE自定記憶體設計範例

Andes Custom Memory (ACM)

ram XMEM {
 interface= SRAM;
 width= 32;
 address_bits= 12;
};

Memory name

SRAM interface
32-bit data width
12-bit address space

Example:

Instruction
Logic

operand access

memory read/write control

Memory Interface

Taking RISC-V® Mainstream 20

csim & RTL:
same as scalar version !!!

vec insn vmadd32 {
 operand= {io gpr acc,
 in XMEM dat, in YMEM coef,
 imm5 cnt};
 loop_type= repeat(cnt);
 stride<dat>= 1;
 csim= %{
 ...
 %};
 latency= 1;
};

ram XMEN { //same for YMEM
 interface= SRAM;
 width= 32;
 address_bits= 12;
};

Vector Instruction

for loop, repeat "cnt" times
Memory address automatically increases 1 for next
iteration

per-iteration operation and latency

// ACE_BEGIN: vmadd32
...
// ACE_END

per-iteration logic

vmadd32: Vectorizing madd32

Taking RISC-V® Mainstream 21

Everything else:
same as foreground version !!!

vec bg_insn bvmadd32 {
 operand= {io gpr acc,
 in XMEM dat, in YMEM coef,
 imm5 cnt};
 loop_type= repeat(cnt);
 stride<dat>= 1;
 csim= %{
 ...
 %};
 latency= 1;
};

Background Vector Instruction

// ACE_BEGIN: bvmadd32
...
// ACE_END

bvmadd32: Backtorizing madd32

ram XMEN { //same for YMEM
 interface= SRAM;
 width= 32;
 address_bits= 12;
};

Background instruction is executed in
parallel with all other instructions

Taking RISC-V® Mainstream 22

insn madd32rb {
 op= {io gpr acc,
 in XMEM @xadr:u dat, in YMEM @yadr:u coef};
 csim= %{
 acc+=(data & 0xffff)* (coef & 0xfff)
 +(data >> 16) * (coef >> 16);
 %};
};

進階範例: 環形緩衝區使用

ram XMEM { //same for YMEM
 interface= SRAM;
 width= 32;
 address_bits= 12;
};
reg xadr { //same for yadr
 number= 4;
 width= 12;
};

address from
custom register

post-update (ACE generated logic will get it done!)

XMEM

xadr
xadr+1 for next use
 (auto-increment and auto-update)

YMEM

yadr

yadr+1

the address is wrapped-around to 0 on overflow

Ring Buffer

Taking RISC-V® Mainstream 23

進階範例: 64個8-bit數據向量的內積
insn innerp {
 op= {out gpr IP, in CfReg C, in VMEM V};
 csim= %{
 IP= 0;
 for(uint i= 0; i<64; ++i)
 IP+= ((C >>(i*8)) & 0xff) *
 ((V >>(i*8)) & 0xff);
 %};
 latency= 3; //enable multi-cycle ctrl
};
reg CfReg { //Coef Registers
 num= 4;
 width= 512;
};
ram VMEM { //data memory
 interface= sram;
 address_bits= 3; //8 elements
 width= 512;
};

//ACE_BEGIN: innerp
assign IP= C[7:0] * V[7:0]
 + C[15:8] * V[15:8]
 . . .
 + C[511:504] * V[511:504];
//ACE_END

acr_CfReg
Instruction

Logic

SRAM

acm_VMEM

512b

512b

32b
GPR

memory interface

Taking RISC-V® Mainstream 24

ACE的優勢

Users focus instruction semantics, not CPU pipeline

Housekeeping tasks are offloaded to COPILOT
 opcode selection and instruction decoding

 operand mapping/accesses/updates

 dependence checking

Comprehensive support
 Powerful instruction semantics: vector, background, wide operands

 Auto-generation of verification environment, development tools and
RTL code

ACE unlocks RISC-V’s potential for DSA

Taking RISC-V® Mainstream 25

Andes 提供客製化服務

Andes Custom Extension
 COPILOT tool license

Andes Custom Computing BU (CCBU)
 Analysis of customization algorithm

 Evaluation of customization instruction/IP

 Deliverable of customized IP

 Maintenance for customized IP

New business model for customizing RISC-V CPU for
you

Taking RISC-V® Mainstream 26

結語

More and more AIoT applications are emerging with
next generation 5G networking
 Smart home, office

 Intelligent retail, manufacturing, medical treatment

Power consumption and computation capabilities
are among the most critical issues

Andes provides innovated solutions helped
customers to innovate their SoC

Thank you

